ctDNA-based DNADX in hormone receptor-positive and HER2-negative (HR+/HER2-) advanced breast cancer following endocrine therapy and CDK4/6 inhibition: a correlative analysis from the randomized phase 2 PARSIFAL trial

Fara Brasó-Maristany^{1,2}, Javier Cortés^{3,4,5}, José Manuel Pérez-García^{3,4}, Rosario Vega², Laia Paré², Guillermo Villacampa², Judit Matito²,6, Francisco Pardo¹,², Marina Gómez Rey⁶, Mario Mancino³, Elena Martínez-García³, Carmen Mora Gallardo³, Leonardo Mina³, Florence Dalenc⁷, Meritxell Bellet⁸, Manuel Ruiz-Borrego⁹, Miguel Gil-Gil¹⁰, Peter Schmid¹¹, Charles M. Perou¹², Joel S. Parker¹², Patricia Villagrasa², Ana Vivancos⁶, Aleix Prat^{1,2,13,14,15}, Antonio Llombart-Cussac^{3,16}

Encomics Sumber and Ridgewood, New Jersey, US; 4. International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Group, Barcelona, Spain; 5. Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Spain; 6. Cancer Genomics S L, Barcelona, Spain; 6. Cancer Genomics Group, Barcelona, Spain; 6. Cancer Genomics S L, Barcelona, Spain; 6. Cancer Genomics Group, Barcelona, Ba Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; 7. Institute of Oncology (VHIO), Barcelona, Spain; 10. Institute and Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; 10. Institute of Oncology (VHIO), Barcelona, Spain; 10. Institute and Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; 10. Institute and Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; 10. Institute of Oncology (VHIO), Barcelona, Spain; 10. Institute and Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; 10. Institute and Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; 10. Institute and Vall d'Hebron Institute and Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; 10. Institute and Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; 10. Institute and Vall d'Hebron Institute and Vall d' Blood Diseases, Hospital Clinic de Barcelona, Barcelona, Spain; 14. Department of Medicine, University of Barcelona, Spain; 16. Arnau de Vilanova Hospital, Valencia, Spain

Background

- The PARSIFAL trial (NCT02491983) randomized 486 patients (pts) with endocrine-sensitive, HR+/HER2- advanced breast cancer to receive (1:1 ratio) first-line palbociclib with either fulvestrant or letrozole¹. Both treatments had comparable efficacy and safety results (**Figure 1**).
- DNADX, a novel machine learning-based approach, utilizes DNA from tumor tissue or plasma circulating tumor DNA (ctDNA) to identify clinically relevant phenotypic tumor features and classify breast cancer into 4 subtypes² (**Figure 2**).
- Here, we evaluated DNADX's ability to predict prognosis and treatment benefit in endocrinesensitive HR+/HER2- advanced breast cancer following endocrine therapy and a CDK4/6 inhibitor.

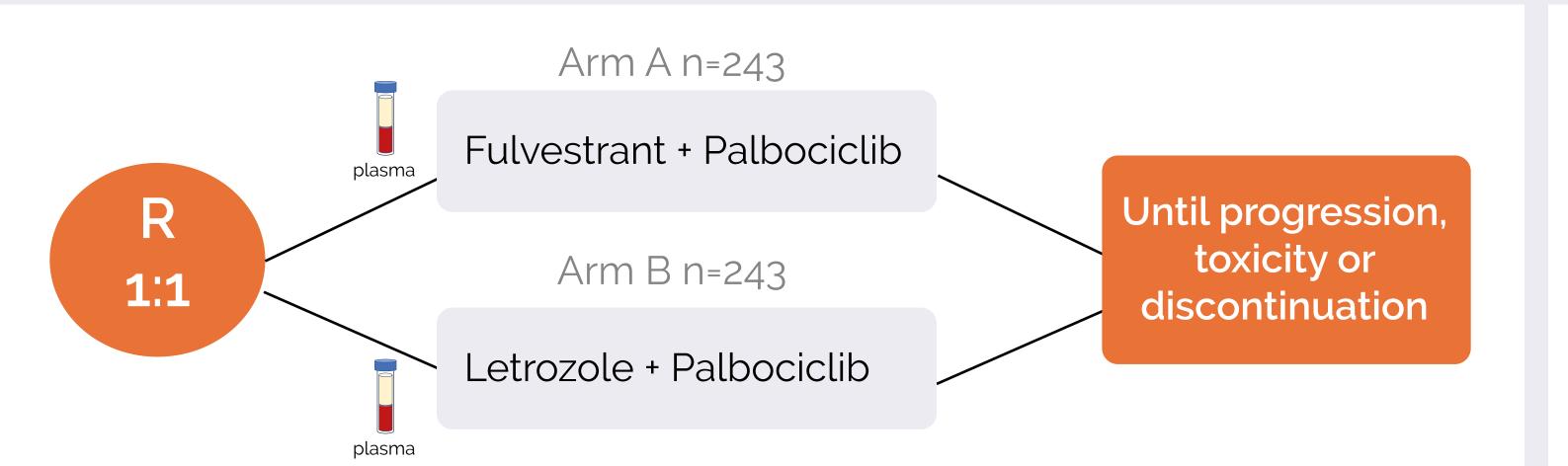
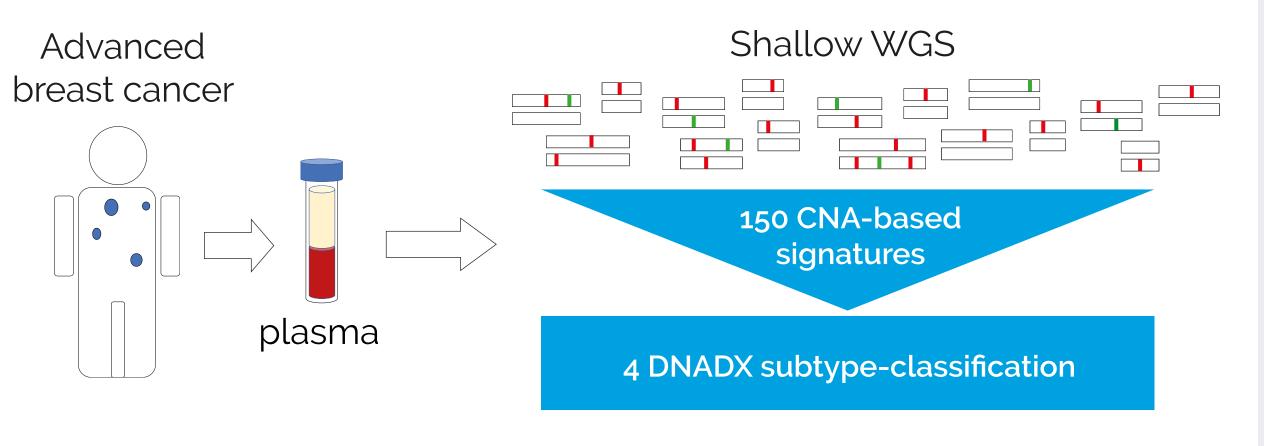
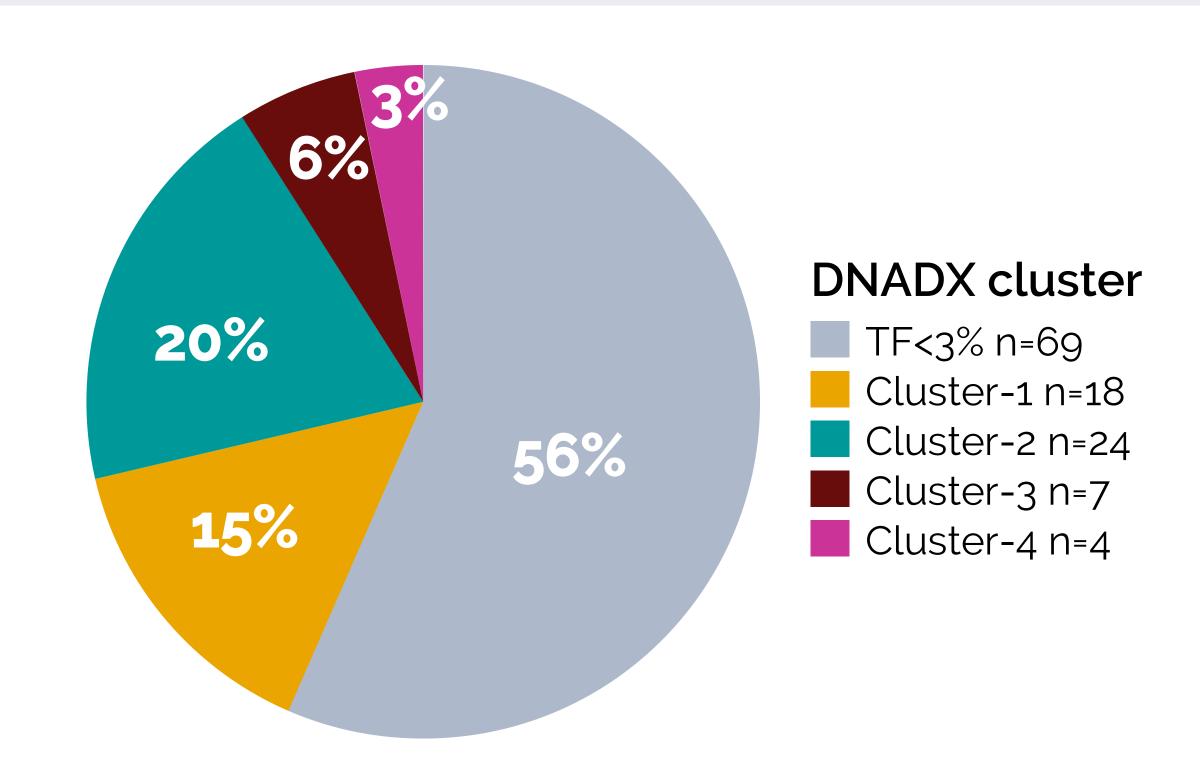



Figure 2. DNADX test

Methods

- DNADX was evaluated centrally in available baseline pre-treatment plasma samples from the PARSIFAL trial. Shallow whole genome sequencing (WGS) was performed on cell-free DNA (cfDNA), and the 4 DNA-based subtypes (Clusters-1, -2, -3, and -4) were identified if the tumor fraction (TF)≥3% (Figure 2).
- The main objective was to evaluate the association of DNADX subtypes with progression-free survival (PFS) and overall survival (OS).
- Secondary objective was to identify the subgroup of pts who benefit more from each endocrine treatment.
- Uni- and multi-variable Cox regression models were used after adjusting for TF, menopausal status, ECOG performance status, de novo metastasis (vs. recurrence), visceral disease, and number of metastatic sites.


Results

- DNADX was evaluated in ctDNA samples from 122 pts (25.1%). Clinical variables were similar to overall PARSIFAL population (Table 1).
- DNADX cluster distribution and biology are represented in Figures 3 and 4.

Table 1. Patient characteristics

	All (r	1=122)	- 51515	ciclib- ant (n=62)		ociclib- ole (n=60)
Variable	n	%	n	%	n	%
Age	59.5 (31-84)		60 (31-84)		59 (35-83)	
Race						
Asian	1	8.0	1	1.6	Ο	0
Black	1	8.0	1	1.6	Ο	0
White	120	98.4	60	96.8	60	100
ECOG performance						
Ο	70	57.4	38	61.3	32	53.3
1	77	63.1	50	80.6	27	45
2	5	4.1	4	6.5	1	1.7
Menopausal status						
Premenopausal	15	12.3	7	11.3	8	13.3
Postmenopausal	107	87.7	55	88.7	52	86.7
Type of disease						
De novo	56	45.9	27	43.5	29	48.3
Recurrent	66	54.1	35	56.5	31	51.7
Disease site						
Visceral	70	57.4	33	53.2	37	61.7
Non-visceral	52	42.6	29	46.8	23	38.3
Number of disease sites						
<3	60	49.2	34	54.8	26	43.3
>=3	62	50.8	28	45.2	34	56.7
Mesurable disease						
Yes	101	82.8	51	82.3	50	83.3
No	21	17.2	11	17.7	10	16.7

Figure 3. DNADX cluster distribution

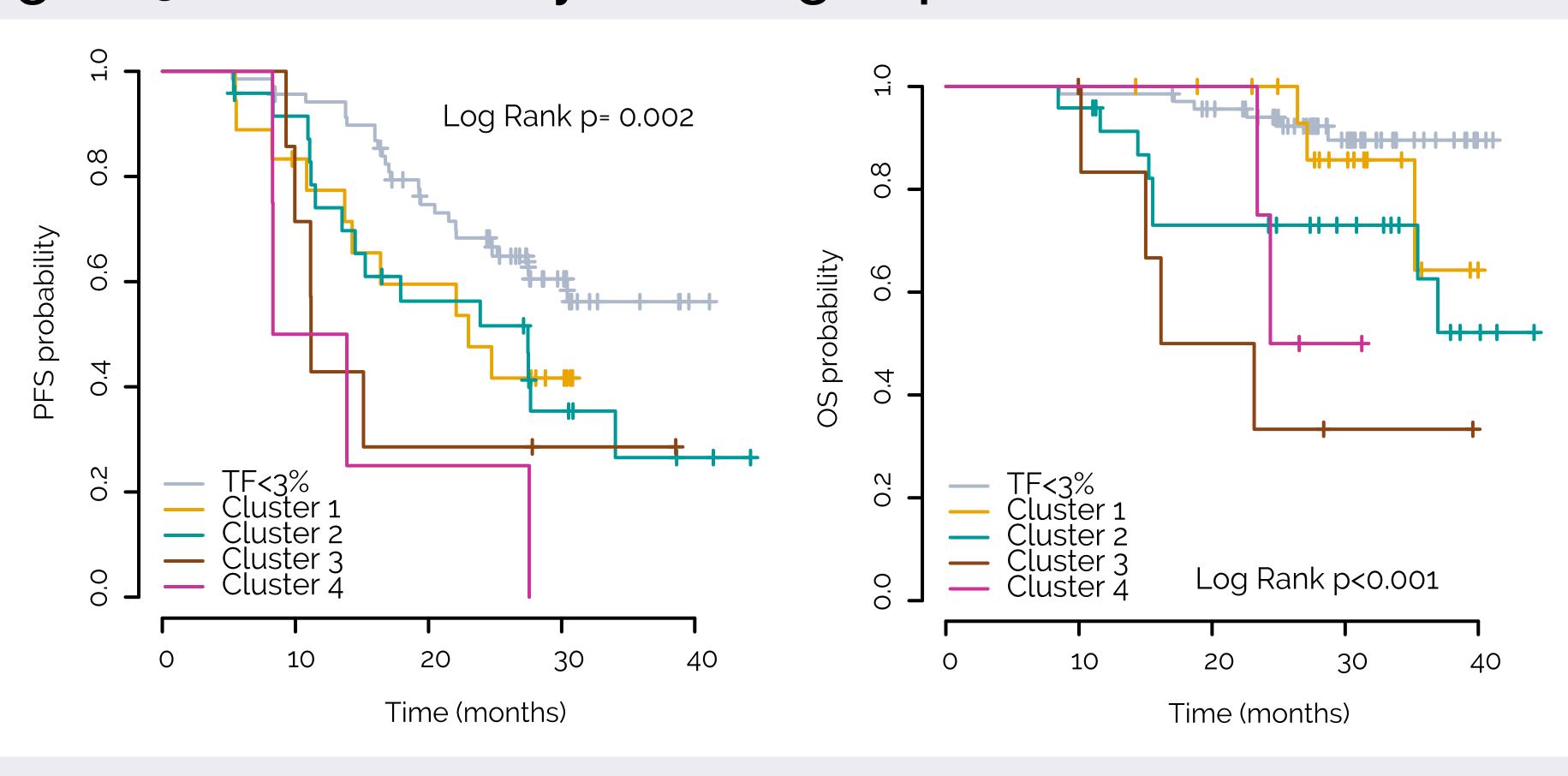
- In terms of PFS, pts classified in Cluster-2, Cluster-3, and Cluster-4 subtypes had a higher risk of progression (Table 2 and Figure 5).
- In terms of OS, pts classified with TF<3% had a lower risk of death compared to Cluster-2, Cluster-3, and Cluster-4 subtypes (Table 2 and Figure 5).
- Similar results were obtained for PFS and OS after adjusting for other clinical-pathologic variables (**Table 2**).
- The interaction test in terms of PFS suggested a benefit of fulvestrant over letrozole in Cluster-1 and Cluster-4 (**Table 3**).

Table 2. PFS and OS by DNADX group

Model	Group	PFS HR (95% CI)	p-value	OS HR (95% CI)	p-value
	TF<3%	Ref.	<u>-</u>	Ref.	
Univariate	Cluster 1	1.88 (0.90-3.90)	0.091	1.90 (0.48-7.61)	0.363
	Cluster 2	2.02 (1.07-3.82)	0.031	4.23 (1.46-12.282)	0.008
	Cluster 3	3.15 (1.20-8.24)	0.020	11.13 (3.11-39.80)	<0.001
	Cluster 4	5.62 (1.95-16.20)	0.001	6.80 (1.36-33.95)	0.019
Multivariable*	TF<3%	Ref.		Ref.	
	Cluster 1	1.72 (0.81-3.66)	0.158	1.67 (0.40-6.92)	0.479
	Cluster 2	1.89 (0.97-3.65)	0.060	3.65 (1.18-11.28)	0.024
	Cluster 3	2.56 (0.92-7.14)	0.073	11.19 (2.66-47.02)	<0.001
	Cluster 4	4.55 (1.50-13.88)	0.007	7.22 (1.27-40.97)	0.026

Table 3. PFS benefit of fulvestrant over letrozole

Model	Group	PFS HR (95% CI)	p-value	interaction test
	TF<3%	Ref.		
	Cluster 1	0.23 (0.05-1.04)	0.060	
Univariate	Cluster 2	0.57 (0.16-2.08)	0.390	p=0.046
	Cluster 3	2.51 (0.34-18.36)	0.360	
	Cluster 4	0.06 (0.01-0.59)	0.020	
	TF<3%	Ref.		
	Cluster 1	0.18 (0.04-0.87)	0.030	
Multivariable*	Cluster 2	0.52 (0.13-2.10)	0.360	p=0.037
	Cluster 3	1.53 (0.19-12.70)	0.690	
	Cluster 4	0.05 (0.01-0.48)	0.010	


Figure 4. DNADX cluster biology

*menopausal status, ECOG performance status, de novo metastasis (vs. recurrence), visceral disease, and number of metastatic sites.

HR: hazard ratio, CI: confidence intervals. Ref.: reference

Figure 5. PFS and OS by DNADX group

References: 1. Llombart-Cussac et al. JAMA Oncol. 2021. 2. Prat et al. Nature Commun. 2023. Funding: Study sponsored by Medsir and Reveal Genomics. FBM recieved an Ayuda Investigador AECC 2021 (INVES21943BRAS) from Fundación Científica AECC. Conflicts of interest of the first author: FBM is an inventor of a filed patent related to DNADX.

Copies of this poster obtained through Quick Response (QR) Code are for personal use only and may not be reproduced without permission from SABCS® and the author of this poster.

Conclusion

Liquid biopsy-based DNADX subtypes predict outcomes in pts with endocrine-sensitive HR+/HER2- advanced breast cancer on first-line endocrine therapy and CDK4/6 inhibitors, potentially identifying the most optimal endocrine treatment for each patient.